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TIME-DEPENDENT CALCULATION METHOD FOR

TRANSONIC NOZZLE FLOWS

Pierre Laval

ABSTRACT. A time-dependent method is developed
to compute mixed two-dimensional or axisymmetric flow in
a nozzle with or without central body. The time-dependent
equations of motion are used in conservative form, with
transformed spatial independent variables. An explicit
second-order accurate difference scheme, similar to a two-
step Richtmeyer scheme, is set up with an artificial
viscosity term.

Results are presented for an annular nozzle and for
five classical axisymmetric nozzles with small throat radius
of curvature (the ratio of curvature radius to nozzle radius
at the throat varying from 0.8 to 0.1). Excellent agree-
ment is found with experimental data and in particular
with experimental results obtained for a conical converging
nozzle.

Introduction /2*

The problem of mixed flow (subsonic-transonic-supersonic) in a converging-

diverging axisymmetric nozzle can be solved theoretically either by analytical,

or by time-depetnent methods.

The solution of this problem is Lof great practical interest when the

ratio of the throat radius of curvature to the nozzle radius at the throat,

R/h, is less than 1; and more especially, when the ratio tends toward zero

(truncated cie and convergent).
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Classic analytical methods, such as those of S.auer [1], Oswatitch [2]

and Hall [3], are no longer useful when R/h is of the order of 2.

More recent methods- such as those of H6fpkins-aind- HilI- [4] and Kliegel

and Levine [5] can handle the case of nozzles with smaller radius of ?

curvature (R/h < 1). In the first [4], which is an inverse method, the authors

used a series expansion in powers of the stream function. In the second [5],

solutions are obtained as series expansions with respect to the parameter

1/1 + R/h.

Agreement of these two methods with experiment [6] is satisfactory in

the case of a nozzle defined by R/h = 0.625 (at least in the throat), but they

do not allow an approach to the case of the convergent truncated cone, since

their expansions diverge for R/h < 1/4.

This problem of mixed flow can be studied another way by a time-dependent

method. Introduction of time into the flow equations, making them hyperbolic,>

is known to allow calculation of the entire flow field with the same numerical

method, and to give the desired steady flow as the asymptotic limit of a

time-dependent flow.

Such a method was first used by Saunders [7] to calculate the transonic

flow in a classic axisymmetric nozzle, using an explicit second-order method

proposed by Thommen [8], which did not contain a pseudo-viscosity term.

However, it has been shown by Burstein [9] that it is necessary to introduce

a pseudo-viscosity term to avoid instabilities in a second-order method such

as that of [7].

These problems were then treated by Migdal, Klein, and Moretti [10],

with a method developed for the problem of a detached shock wave by Moretti

and Abbett [11].
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In addition, the method of Godunov [12] has been'extended to the problem

of flow in a classical or annular axisymmetric nozzle by Ivanov [13].

In the present work, a-time-dependent method is proposed for calculating

the mixed flow in an axisymmetric nozzle with or without a central body.

The flow equations are used in conservative form, the space variables

(X, Y) being regular functions of the variables of the physical plane (x, y).

These equations are solved numerically by an explicit second-order method which

is related to the "two steps in time" method of Richtmyer [14], and which

contains a pseudo-viscosity term.

A direct problem is solved by giving a steady-state distribution of the

angle :6 (X) on the lower and upper boundaries of the (X, Y) net. The nozzles

considered are prolonged upstream by a tube of constant cross-section, and

the conditions in the inlet are time-dependent.

This method has been applied to calculation of classic axisymmetric

nozzles with a small radius of curvature. The results obtained for different

values of the parameter R/h between 0.8 and 0.1 will be presented and compared

with experimental results and with those of other analytic or time-dependent

methods.

In particular, these results will show that the proposed method allows

an approach to the limiting case of the convergent truncated cone. Application

of this method to the case of an annular nozzle will also be presented.

We have also established another time-dependent method in which the.

coordinates (X, Y) used are images of the streamlines and of their orthogonal

trajectories [15], [16]. This method was developed especially to treat a

problem of confluence of two flows [17], where use of these coordinates allows

the wake boundary to be represented by a line Y = constant. For the problem

of flow in a nozzle, this second method leads to large difficulties in
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calculation, and requires much more computer time than the first (in particular,

it requires the calculation of 7 quantities at each point instead of 4).

Since these-two--methods are-similar in-principle-,-and--since the numerical*

results have been obtained with the first method, we will present only that

one to shorten the exposition.

1. Conservative Equations in Cartesian Coordinates

The equations of motion of a time-dependent compressible planar (e = 0)

or axisynmmetric (E = 1) flow can be written in the conservative form

(1)

in Cartesian coordinates (x, y).

The vectors U, F, G and H are.defihed as functions of the usual quantities

p (pressure), p (density), V (velocity), and 0 (angle of velocity with x-axis):
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For the case consideredhereof a perfect gas (y = constant), the total

energy is given by:

2. Change of Spatial Variables

Flows in axisymmetric nozzles composed of a convergent-divergent channel

will be calculated. The nozzles to be considered are classic nozzles, or may

have a central body (annular). Let y = Ys(x) and y -,Yi(x) be the equations

of the meridians of the upper and lower walls in the more general case of an

annular nozzle (Figure 1, b).

To simplify numerical solution,

II

the following change of variables is 

. pclassiar nla (b) annular no n domain. v s 

curvatur athgem iThe ltower (CD) and upper (AB)l

y = O and y = 1 in the transformed

p lan e (Figure-l, a and b)r .

.- .SREPRODUCIBLE5
In particular, we hav tudied classic nozzles with very small radius of

curvature at the geometric throat (0.1 < R/h < 0.5), for which it is also neces-

sary to introduce a change of axial variable to expand the region of the geo- 

metric throat where changes in the quantities characterizing the-flow are very '

rapid (Figure 2).
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For this, we have used the following

change of variable:

-' I X {=it) lug 1 1P, vX
4 t U

(3)

with

I

Figure 2. Expansion for 
0.l< R/b < 0 .5. .~A<

I=" (.) %,· (4Z E-+ R 
No a I -- s(j= N ( 

ft a 4Ka i'' ) '
11 -I

where x
0

is the abscissa of the cross-section

of the geometric throat.

The quantities k, kl, and k2 are functions of the expansion parameter'

1 2~-

For nozzles with R/h > 0.5, it is not necessary to use the expansion

function. One simply sets X = x.

3. Equations in the New System of Spatial Variables

The new space variables (X, Y) defined by relations (2) and (3) are non-

singular functions of the variables in the physical plane, (x, y), so it is

known that the equations of motion can be obtained in conservative form in the

new system of independent variables (X, Y, t). This is shown in [18] and [19],

for example.
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The system of Equations (1) is thus replaced by the system:

- --- ------ --- I d& ;gr(4)

which represents the equations of continuity, of momentum, and of energy in

the new variables.

The new vectors U, F, G and H are thus defined:

as functions of

- the original vectors U, F, G and H;

- quantities related to the nozzle geometry, such as:

-- quantities related to the dilitation function, such as:

Since it is impossible to confuse the vectors of systems (1) and (4),

we shall hereafter write the vectors of system (4) without bars.

The components of the vectors F, G and H are given as functions of the

4 components of the vector U:

Utz UZrctU,,4:
U3~~~~~~~~~~~~~5
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by the following relations:

F=. U-t' U, ft (Ut' ----
UlJt

:~~~~a F_ { l~t (4 +)(>4'yf

i~~~~ 1 U 4LIX9 

4s ,,{1+ 4$$^)

, Xt t 4 

I I, Y f \ (6
-ff

Ut (6)

The usual quantities p(x, y, t), p(x, y, t),

are expressed as functions of the 4 components of

V(x, y, t) and 0(x, y, t)

the vector NA(X, Y, t) by:

(7)

4. Method of Finite Differences

For numerical solution of the system (4), we have constructed an explicit

second-order method, related to a "two-steps-in-time" method of Richtmyer [14].

8
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A rectangular net is defined in the X, Y plane by use of the lines with

coordinates X.(j = 0, 2, 4, ..., jmax) and Y (1 = 0, 2 4, ... lma).

The four components of the vector are to be determined at the points

of the net USA jSwt ~_~ 3. As these quantities are known
n+2

in the whole X, Y plane at time tn. their values are calculated for time t

using two steps in time:

a. First step in time (t + t
n +

)

I /

b. Second step in time (t
n l

+ t n +
2 )

'l . , ,
a- Ea sii on next e /L.,,· -I.'1~~~~~~ AK-.,(9)

b. Second step in time (t - t 

The components of the vectors

-- .---- - ---- (Equations -continued- on--next -page)



are determined through relations (6).

In the second member of (9), we have introduced a pseudo-viscosity term:

-; .EXStTA(a1^jt £YIwn ''; "U (10)

which is of the same type as that defined by Burstein [9].

It is known [9], [14] that a pseudo-viscosity term must be used in a

second-order method, even if shock waves are not involved in the flow problem,

in order to avoid the nonlinear instabilities inherent in such a method.

The operators 6
X

and 6 are the-differential operators in the X and Y

directions. The matrices qxand;a /must be chosen so that they give the

desired dissipative effects when the vector ·:varies rapidly between two

neighboring points, and so that they are negligible when the variation is

small. We have adopted the definition of these matrices given in [19]:

f(9x);,1Lt: j -5r| I i

where p and v are the velocity components and I is the unity matrix.

The parameter "I will be defined by relation (13).

The study of the stability of the method proposed in Equations (8) and

(9) is given in the appendix. This study, carried out for planar flow (C = 0),

leads to the criterion for stability:
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__ _ _ _ _ _ _ _ _ aEm i (12)

where Iv Imax= (V1 + c) for cartesian coordinates, and a relatively complicated

expression for the (X, Y) coordinates used (Equation A.6).

This criterion seems to indicate that it is sufficient to choose the.

parameter , of Equation (10) to be equal to a constant of the order of unity,

so that the ratio At/Ax will not be too small. Preliminary numerical tests on

a classic nozzle (6.1) have shown that in fact such a choice leads to numerical

instabilities in the axial region of the flow, and we have thus been led to

define this parameter as a function of Y:

IX .. IV (13)

whereta
x is the value of on the wall, a constant of the order of unity.

This definition assures stability of all the calculations carried out on classic

nozzles (6.1, 2, 3). The definition of i, ils different for an annular nozzle,

and will be given in Section 6.4.

)5. Initial and Boundary Conditions

The direct problem is solved by giving a steady-state distribution of

the angle e on the upper (Y = 1) and lower (Y = 0) boundaries:

- for Y - 1: 0 = 0s (X), the angle of the meridian of the upper wall;

- for Y = 0: 0-: 0,,i (X), the angle of the meridian of the central body,

or 0 = 0, along the axis.

11.



5.1 Initial Conditions

Initial values of the flow over the whole X,Y plane are found by using

the law of flow through sections. The angle 8 is calculated at each section

X = constant by a linear law:

The values of the 4 components of the vector , given by the relations

(5), are thus determined at each point of the X, 'Y net at the initial time

tno

5.2 Boundary Conditions

The flow is next calculated at time tn ° + At, using method (8), then at

time tnp, + 2 At, using method (9), and so on. This allows use at each step of

a five-point method , and thus calculation of the net (X, Y) in the whole

rectangle interior to A'B'C'D' (Figure 3). This net must be complete by con-

ditions on the four boundaries:.

a. Upper boundary AB iY - 1, 0 < X < Xmax', = es(X)]

The three components U1, U2, U4 of the vector I are calculated by

parabolic extrapolation at each section X = constant. This gives UU~ t).

b. Lower boundary CD (Y = 0, O < X < X )max

- This boundary is the nozzle axis (0 = 0):

(I)

Except for the pseudo-viscosity term, which requires special treatment for
the points on the contour of the rectangle A'B'C'D' (Figure 3).
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In this case, the symmetry properties

A Y-i=0-=,~ tl B of the flow are used in calculating the

quantities by parabolic interpolation at each

I. ~ ' . X-4.-" -_secion X = constant. In the planar case

(E = 0), the interpolation is made for the

three components U1, U2, and U4, whil
e

U = 0

. C- _ _ __ For axial symmetry (c = 1), where U 1 = 
g a ]irtJ(central body) U = U = 0, the interpolation is made for

'' if ! n(axis)l { p, p, and V.

Figure 3
Figure 3 - This boundary is the lower wall

['? = 8i(X) ] :

The three components U1, U2 and U4 are calculated by parabolic extrapola-.

tion at each section X = constant. This gives _V,>@44-|. 

c. Upstream Boundary AC (X' = , 0' Y < 1)

Calculation of upstream conditions is based on the conservation of mass

flow by writing that the mass flow ID'*.-J:0'4yI in the inlet section at time

t + A t is equal to the mass flow }'=al calculated in the geometric

throat at time t.

This method has been used by Saunders [7], with the addition of requiring

the upstream conditions to be uniform in Y (one-dimensional flow), which

means that an outlet section must be taken sufficiently upstream in the

inlet tube. This increases the number of points in the net considerably,

and also the computational time.

To avoid these problems, nonuniform conditions in Y are imposed in /7

section AC at the downstream end of the tube (Figure 4):-----

13



A
A, ~B

I1 ID
A I

% - I

C D
A B

XO ._I.

T

- The four components of the

vector [ (0, Y, t) are calculated

by parabolic extrapolation.

The value of the component U2

(0, Y, t) is corrected by consi-

deration of the conservation of

mass flow.

d. Downstream boundary BD

(X = X O < Y <«,~1)
max '- -

r.
I.I

X igure 4
., A.

The quantities are simply calculated

by linear extrapolation (Figure 4)..

6. Results

The results obtained with an IBM 360/50 program are presented and compared

with experimental results or with those obtained by other methods.

They concern different classic axisymmetric nozzles for which the para-

meter R/h has values of 0.1 - 0.25 - 0.5 - 0.625, 0.8, and one annular nozzle.

In all these applications, the ratio of specific heats y is taken to be

1.4.

6.1 Axisymmetric Nozzle with Small Throat Radius of Curvature (R/h = 0.625)

This is a nozzle with circular longitudinal section at the throat

(R/h = 0.625), composed of a 45° convergent and a 150 divergent section

(Figure 5). 

14
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Lt: V '"" :

axisymmetric nozz e

1 , / \~ "~ ..... - experimental: M = 1i

t I~"l I ]steady state

l l

geometric throat.

A detailed experimental study of this nozzle was'made by Cuffel, Back,

and Massier [6]. It was also studied analytically by Kliegel and Levine [5],

and numerically by Prozan [201, using-the-method of Saunders [7], and by -------

Midgal, Klein, and Moretti [10].

The results presented have been obtained with a 61 by 21 point net in

(X, Y), without using the expansion function (i.e., with X = x). The ratios

At/AX and At/AY are of the order of 1/17 and 1/12, respectively;ewith AX = AX/h

and At = c*At/h, where the index (,) refers to the sonic state. The value

chosen for the ratio At/AX is a little smaller than that given by the criterion

': for stability obtained for plane flow (Equations 12 and A.5). The constant

'max appearing in the pseudo-viscosity term (Equation 13) is equal to .l5 (calcu-.

lations made with ,] = 1 or 2 give practically the same asymptotic state)..max

Figure 6 and 7 show the change in Mach number with time at a point on /8

.the wall of the geometric throat and at a point on the throat axis until the'

steady state is achieved. For these two points, the value of the Mach number
r-ae2 20-5remains constant within the accuracy of the method (At 2 2- x 10 )f from-thel

S~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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2 5 0th to the 2 8 0 th iteration: M =
wall

= 1.3820 and M = 0.80045. The
isymmatric nozz e axis nl

xperimental:M - 14 steady state is considered established'

...~. ' · ~.......in the geometric throat when the value

co A of the mass flow there becomes constant
steady stat -( ao -2

'- ~~ ,,-ad~~~~ , (to about At), which occurs at the

_ fY.6.;o- iterati0n 3 98th, iteration (Table 1). The corre-

sponding values of the Mach number are

Figure 7. Change of Mach number with 1.3935 (Figure 6) and 0.824 (Figure 7),
time. Point on the axis at the

tome. oincthronathe respectively, and may be compared togeometric throat.
the experimental results of Cuffel,

Back, and Massier [6]: M = 1.4wall
and M = 0.8.

axis

The asymptotic value obtained for the mass flow coefficient CD in the

geometric throat is shown in Table 1, where N is the number of time iterations.

This value is also compared with the values obtained by other methods.

In [5], the value of the mass flow coefficient is obtained by use of the

approximate formula

.I
~

'; 4'; . ... - ..,. -,. (14)

which depends only on 1/1 + R/h and y, but is independent of the angle of the

convergent section. The corresponding value, C = 0.982, thus has onlyaia

qualitative nature.

Figure 8 shows the iso-Mach lines obtained (for 0.6 <_M < 1.6). The dis-

tribution of Mach number along the axis is compared with that given by Cuffel,

Back, and Massier [6] (Figure 9). This comparison is very satisfactory out to

16



TABLE 1.

E3 C8G19 ri.^a~o15

li ac,·ist_ 4.o

s sv 3Cte (,@ffi~a-:

,, 0^<£44

VALUE OF THE MASS FLOW
COEFFICIENT CD

2 AI L.!

<Saunder.1.
method C7
resent method

.,_

Figure 8. Axisymmetric nozzle
R/h = 0.625.

Change of Mach number on
Ithe axis. l

a value of the Mach number of the

order of 1.2(2). In general, compari-

son of the results obtained for the

.distribution of Mach number over the

whole flow field with experimental

results [6] is very satisfactory.

6.2 Axisymmetric Nozzle with Very /9

,tL' Small Throat-Radius of Curvature

(-R/h 0.1)

This is a nozzle with circular longitudinal section at the throat (R/h =

= 0.1), composed of a 200 convergent and a 200 divergent section (Figure 10).

It should be noted, however, that the values of [6], taken from the
published paper, are not very precise, and that consequently this compari-
son is-less significant than comparisons made with points on thiewalI
and on the axis in the geometric throat (Figures 6 and 7), for which the
authors [6] stated definitely the value obtained for the Mach number.

17'
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The difficulty in this calculation, which requires use of the expansion

function X = f(x) defined by relation (3), lies in the choice of the parameter

i~i -(~ '; -i (fixing the expansion of the region of the geometric throat where

the quantities characterizing the flow vary extremely rapidly (Table 3). Too

small a value of p0(PO < 3) gives insufficient expansion; too large a value

(P0 > 4) creates numerical instabilities outside the region of rapid transition,

due to too-large values of'\the rati6o>ijbv3 This appears in the second term

of Equation (4).

The results presented were obtained with po = 3.4. The net contained

68 by 23 points (X, Y). The ratios At/AX and At/AY are of the order of 1/16

and 1/15, respectively. The constant ax of Equation (13) is equal to 1.15.

The changes of the Mach number as a function of time at a point on the

wall of the geometric throat and at the axis at the throat are shown in

Figure 11. For these two points, the asymptotic value of the Mach number is

practically attained at the 270th iteration. Table 2, which gives the mass

flow coefficient C
D

in the throat as a function-of N, the number of iterations;

shows that the steady state can be considered to have been attained at the
th

278 iteration in this section, when the corresponding value CD = 0.968988

is obtained with an accuracy greater than that of the method (At 10 ),

and then varies extremely little out to the final iteration (N = 375).

The geometry of the iso-Mach lines (obtained from the 3 7 5th iteration) /10

is given by Figure 12, which shows in particular that the variation of Mach

number is very rapid on the wall, since' the sonic point is situated on the

rectilinear portion, very near the junction with the circular portion, while

the Mach number is 1.821 on the wall of the geometric throat. This variation

is shown clearly in Table 3, which gives the value of the Mach number as a

function of wall (the angle of the meridian of the wall), of x/h, and of X/h

(x is the cartesian coordinate, and X is the expanded coordinate). .._

18



Figure 10. Axisymmetric nozzle
(R/h = 0.1).

Figure 11. Change of Mach number
with time. Axisymmetric nozzle.
20° convergent section R/h = 0.1

TABLE 2. MASS FLOW COEFFICIENT,
200 CONVERGENT SECTION. R/h = 0.1.

: Figure 12. Axisymmetric nozzle with
very small throat radius of
curvature (R/h = 0.1)

279 CoSaodw

l9:0453

3oo o, r.'

__m 0o,9694W

0,9693B 9

TABLE 3. MACH NUMBER ON THE WALL.

I. . . .- -

, t = . .

19
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6.3 Axisymmetric Nozzle with a 200°Convergent Section and Varying R/h Ratios

To show that the present method can handie the case of atrun- 'i-

cated cone convergent section, the preceding study has been completed by

carrying out calculations for a nozzlecomposed of a 200 convergent and a 200

divergent section for three other values of the parameter R/h: 0.25 - 0.5 -

0.8. The case for R/h = 0.25 was treated by taking the expansion parameter

p0 = 2.5, while in the other two calculations (R/h = 0.5 and 0.8) no expansion.

function was used (X.= x).

The results are compared with experimental results of O.N.E.R.A. [21] for

a 200 truncated cone convergent section for an ideal gas (y= 1.4).

Figure 13 shows the position of the sonic line as a function of R/h.

The agreement with the experimental results is very satisfactory.

Figure 14 shows the mass flow coefficient in the geometric throat as a /11

function of R/h. By extrapolation of the results obtained for the four values

of R/h (0.1 - 0.25 - 0.5 - 0.8), a mass flow coefficient of 0.968 is obtained

for R/h = 0. The relatively large difference (3/1000) between this result' and

the experimental result of :C = 0.971 is due in part to difficulties in the

experimental measurements in the region of the angle apex, which result in a

certain amount of uncertainty in the determination of the test line (peak or,

characteristic line) along which the mass flow is calculated. It is for this

reason that experimental points for the sonic line are not given for values of

the ordinate y/h greater than- 0.8 (Figure 13).

Comparison between results of the present method for the mass flow.

coefficient in a nozzle with 20° convergent section and the results obtained

with the approximate F6rmula (14) of Kliegel and Levine [5], independent of

te angle of the convergent section, is made in Table 4, which shows clearly

that the fourth order expansion 0t-- is no longer significant when

R/h = 0.25.

20



position of thE
soni5caline asf
a function of I

-As.

present method

lexperimental
truncated cone i'
convergent secti

-"2 . 0 ~ 0,2 W} 

Figure 13. Axisymm.etric nozzle.
200 convergent section.

TABLE 4. MASS FLOW COEFFICIENT AS A
FUNCTIONjOF R/h

p pre'se K i liee : -

h metho 3Jor ed tht>

0,8 0,9612 0,98642 0,966112

0,5 0,9T718 0, Oge2 o,97766

0,25 0,97130 t975) 0,96ft169

0,1 o,969s o0,I674 0,99.

O (0,96B) 0c.9B542 0.923?

200 convergent section

Development independent of the
convergent section angle

I ' 0.0 a25 q5 o* N I

Figure 14. Axisymmetric nozzle with
200 convergent section. Variation
of the mass flow coefficient with
R/h

6.4 Annular nozzle(3)

The example chosen has been

treated earlier by Ivanov [13].

The upper wall of this nozzle is

a cylinder of radius ys = 5. The longi-

tudinal section of the lower wall is 

composed of the straight line y0 = 1,

and of three circular arcs with radii

4, 2.43, and 8.5, respectively '' -- '" '"';

(Figure4'~t5);'' '''".' "" ....

(3)Computations for this nozzle were carried out by Mlle. Mortire of the
O.N.E.R.A. Computer Center.
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Figure.15. Annular nozzle. Figure 16. Annular nozzle. Change of
Mach number with'time. Point on the
lower wall in the geometric throat

Calculation of such a nozzle- differs from that of a classic nozzle mainly

in the choice of the parameter EJ in the pseudo-viscosity term.:? Numerical tests

have led.to the following definition:

The results presented have been obtained by taking m, the value of on 

the lower wall, equal to0b.25.

It must be pointed out that establishment of the steady-state regime is

much slower for this annular nozzle than for the classical nozzles treated

previously; this is shown in Figure 16, which gives the ChAnge in Mach'number -"'

as a function of time at the point-on the lower wall at the geometric throat.

It can be seen that the Mach number has not attained its asymptotic value even

after 500 iterations, which corresponds to computing time of more than three

hours on the IBM 360/50 [for a net of 75 by' 17 points (X, Y)].

These difficulties in obtaining steady state were also encountered by ' /12

Ivanov [13], who emphasized the slowness of convergence in the slightly subsonic

region of the convergent section.
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Figure

1J.

17.

Figure 17 shows the geometry of

the iso-Mach lines in this nozzle.

These lines are slightly more inclined

__ -- ,- than the iso-Mach lines obtained by

C Ivanov. This difference can be accoun-

- ted for in two ways:

- The lines have been obtained by the

Annular nozzle. present method out to the 5 0 0 th
Iso-Mach lines.

iteration, while-the steady state

was not finally established. (This

would require prohibitive computer

time.)

- The calculations of Ivanov were carrie-d out with a net of wider spacing..

Conclusion

The results obtained, and particularly their excellent agreement with

the experimental results, show that the problem of transonic flow in an axi-

symmetric nozzle can be solved quite satisfactorily by a second-order differ-

ence method containing a pseudo-viscosity term.

The method proposed contains the following special points:

a) Conditions in the inlet section of the nozzle are time-dependent, the

mass flow in this section being equal at any time step to the mass flow

calculated in the section of the geometric-throat (5.2 c).

b) The parameter of the pseudo-viscosity term is defined as a fdnction-

of the spatial variable Y (relations 13 and 15).

c) Use of an expansion function X = f(x) (relation 3) allows this method to

- -.-be extended to-nozzles with very small-radius of curvature-(R-/h-=- 0l);
-
-
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and to approach the case of a truncated cone convergent section, as is

is-sho'' by comparison with experiment (6.3).

d) This method can also-be appiied to -th6eproblei of annular nozzles (6.4)

(a problem also treated by Ivanov [13] with the aid of the method of

Godunov [12]).

In common with all second-order, conservative methods, the present one

requires a relatively dense net', and consequently,relatively long computer time.

The different applications to classic nozzles which have been presented /

required o the order of two hours on the IBM '60/50. The steady state was

obtained for a nozzle with very small radius of curvature(T/h = 0.1) after

135 minutes of computation for a net of 68 by 23 points (X, .Y). Use of a

relatively dense net does, however, allow the steady flow to be determined with

good accuracyt\. If one takes into consideration the fact that the lengthof corm-

putation can be reduced by taking initial values not as far away from the steady

state as j/ those given by the law of sections, it can be seen that this method,

is a tool for numerical computation which is not only precise, but also

relatively rapid.

24



REFERENCES /13

1. Sauer, R. General Characteristics of the Flow Trough Nozzles at Near
Critical Speeds. TM-1147, N.A.C.A., June 1947.

2. Oswatitch, K. and W. Rothstein. Flow Pattern in a ,Converging-Diverging
Nozzle. TM-1215, N.A.C.A., March 1949.

3. Hall, I.M. Transonic Flow in Two Dimensional and Axially-Symmetric
Nozzles. Quarterly Journal of Mechanics and Applied Mathematics,
Vol. XV, Part 4, 1962, pp. 487-508.

4. Hopkins, D.F. and D.E. Hill. Effect of Small Radius of Curvature on
Transonic Flow in Axisymmetric Nozzles. A.I.A.A. Journal,. Vol. 4, No. 8,
August 1966, pp. 1337-1343.

5. Kliegel, J.R. and J.N. Levine. Transonic Flow in Small Throat Radius of
Curvature Nozzles.. A.I.A.A. Journial, Vol. 7, No." 7, July 1969,
pp. 1375-1378.

6. Cuffel, R.F., L.H. Back and P.F. Massier. Transonic FIowfield in a
Supersonic Nozzle with Snall Throat Radius of Curvature. A.I.A.A.
Journal, Vol. 7, No. 7, July 1969, pp. 1364-1366.

7. Saunders, L.M. Numerical Solution of the Flow Field in the Throat Region,
of a Nozzle. BSVD-P-66-TN-001, August 1966.

8. Thommen, H. Numerical Integration of the Navier-Stokes equations.
G.D. CONVAIR ERRAN, August 1965, p. 759.

9. Burstein, S.Z. Finite Difference Calculation for Hydrodynamic Flow Con-
Taining Discontinuities. Journal of Computational Physics, Vol. 1,
No. 2, November 1966.

10. Migdal, D., K. Klein and G. Moretti. Time Dependent Calculations for
Transonic Nozzle Flow. A.I.A.A. Journal, Vol. 7, No. 2, Febru~ary 1969,
pp. 372-373.

11. Moretti, G and M. Abbett. A Time-Dependent Computational Method for
Blunt Body Flows. A.I.A.A. Journal, Vol. 4, No. 12, December 1966,
p. 2136.

25



12. Gudonov, S.K., A.V. Zabrodine and G.P. Prokopov. Finite-Difference
Method for Solution of Time-Dependent Problems. Application to the
Calculation of Flow with a Detached Shock Wave. Journal de Math6matique
et de Physique Mathematique, 11961?,>i, pp. 1020-1050

13. Ivanov, M. and A.H. Kraiko. Numerical Solution of the Problem of Mixed
Flow in a Nozzle (Direct Problem). Journal de la Mechanique des
liquides et des gaz, No. 5, 1969, pp.-77-83.

14. Richtmyer, R.D. and K.W. Morton. Difference Methods for Initial Value
Problems Tracts in Mathematics. Second Edition, No. 4, Interscience.
Publishers Inc., New York, 1967.

15. Carriere, P. Method for Numerical Calculation of a Steady-State Compres-
sible Flow (x, y) as the Asymptotic Limit of a Time-Dependent Flow
(x, y, t). C.R. Acad. Sci., Vol. 266A, April 1968, pp. 1015-1018.

16. Laval, P. Construction of an Explicit and Precise Second-Order Difference
Scheme for the Calculation of Planar or Axisymmetric Compressible Flow.!
C.R. Acad. Sci., Vol. 267A, November 1968, pp. 754-756.

17. Laval, P. Construction of an Explicit and Precise Second-Order Finite-
Difference'Scheme of the LAX-WENDROFF Type, with Two Steps in Time.
Application to the Calculation _of the Equilibrium Configuration of Two:
Compressible Co-Axial Axisymmetric Flows. Unpublished O.N.E.R.A.
Document, September 1968.

18. Anderson, J.L., S. Preiser and E.L. Rubin. Conservation Form of
Equations of Hydrodynamics in Curvilinear Coordinate Systems.
of Computational Physics, Vol. 2, No. 3, February 1968.

the
Journal

19. Lapidus, A. A Detached Shock Calculation by Second Order Finite
Differences. Journal of Computational Physics, Vol. 2, No. 2,
November 1967.

20. Prozan, R.J. Cited in a reference by R.F. Cuffel, L.H. Back and
P.F. Massier [6]. Private Communication, Lockheed Missiles and Space Co.,
Huntsville, Ala., 1968.

21. Solignac, J.L.
published.

Experimental Study of Conical Convergents. To be

26



Appendix A Section 4

Stability of the Method

The stability of the proposed method is studiTedl for the case.of planar

flow (e = 0) in a nozzle without a central body, with R/h-> 0.5. The change

of spatial variables is then defined by IY= ' ''='l (no expansion function).

Under these conditions, the vector H appearing in the second'member of

system (4) is zero.

The linearization hypotheses are as follows:

The matrices A and B, jacobians of the vectors F and G, as well as the

scalar matrices[ and ~ defined by Equation (11), are'supposed to be locally

constant.

In that case, one may set

I JF-U G=BU

IQ= X·t9 tZ9U ÷+ SY$U

and may carry out a Fourier analysis by setting t L'Y where

is a constant vector for each value of n.

The amplification matrix Uo =MUof the system (8) and (9) is written]'

(taking AX = aY))

(A.1)
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where -

$ -, ~a613 - Asa ,, s7 4o By _

Since the direct calculation of the eigenvalues of the matrix C is too

complicated, the system of equations will be considered in Eulerian form, as

was done in [14], in which the matrices A' and B' are simpler than the matrices

A and B in the linearized system of (4):

By similarity, one ~an go from this Eulerian system to the linearized

system (4). The eigenvalues of the amplification matrix M are invariant under
similarity, so matrix C of (A.1) can be replaced by the matrixze

for which the eigenvalues can be calculated without difficulty:

.t S --S. a. SDoa. 

, ., yM~yi& An I4 p v t. :
K~~~~

_ OL 711 I

- (A.3)

with:
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K _I

1- V :(s O--O)

A = cc,) - Y P 

where the angle 01 is defined by:

The eigenvalues of M are expressed as functions of the eigenvalues of C' ':"

-b:y the relation:.

(A.4);

Note that a ~ , where mal is the maximum eigenvalue of C',

and sinceJ<JG-- and% - , the method is stable in the Neumann sense

if

(A. 5)

where IvImax allows for increasing K:max

- (A.6),
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This criterion, established for planar flow, can be used only qualita-

tively for applications to axisymmetric flow. The value of this stability

study is that it confirms the necessity of introducing a stabilizing pseudo- I

viscosity term. Thus,-relation- (A.;4 sh6wsu that-if- eth seud--viscosity term

is not considered (tE ), eigenvalues I|i
\
i are strictly equal to 1 when the

eigenvalues I|X of C' are zero,' i.e., when u'= 0 (in particular V> 0) and

Vc from Equ~ati-on :(A.3), so, the -method is not stable for these

particular valuest. Since the scalar matrices qx and qy ar;.e chosen positive I t

(Equation 10), the method with viscosity will always be stable when,

criterion (A.5) is satisfied. , -. -Ai

Translated for National Aeronautics and Space Administration under Contract No.

NASw 2035, by SCITRAN, P.O. Box 5456, Santa'Barbara, California, 93108.
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ABSTRACT

INTRODUCT ION

The calculation of mixed flc in a converging-diverging axisyontri' c noa.eo to
of groat practical interest In the case when tho ratio of throat radiuo of curvaturs
to the nozzle radits at the throat R/ in small. This problem can be solved oithor
by analytical cethodo (HOPKINS and HILL 1966, KLIEGEL and LEVINE 1969) or by nume-

rical timo-depondent methodn (SAUNDERS 1966, MIGDAL, 1KLEIN and LORETTI 1969, IVANOV '
1969).

In the prosent work, a time dependent tethod is uoed to calculateo ixed two-
dimensional or axisymmetric floeas in a nozxle twith or without central body. The
equations of motion are written in terms of transformed spatial variablon and solved

by moans of an explicit second-order scheme. The resulto vill ohoe that the cathod 

proposed here alloos to approach the ilmiting cane of tho conical convorging nosnlo.

A different time-dependent method wao aloo set up in twhich the independent va-,:
riableos are the imagen of the streamlines and of their orthogonal traJoctorios
(P. CARRIERE 1968, P. LAVAL 1968). However, for the probleo considerod here, thin
method proved to be much nore complicated and lead to auch longer computing tis ';

than the first one, and it 71 not be presented here. A numbor of dotaile which
cannot be given here will be available in a more extonsive papor to be publinhed-
soon (P. LAVAL 1970).

I - GENERAL EQUATIONS

In the general case of 'aisymmytric or of t'o-dinenalioal noslo with contral
body, let 3, and &% represent the non-dimensional axial and radial or tranovr.alz
coordinates, and let , scg(: and (,a ,.;)be the equatiaon of the upper and l r
walls. The reference length iD Ouch that -,n tot throat. The trwforosd

coordin3 tos aro defined by tho equations :

m (i) ',', vral X9 -tN Is ud t'; '' of '-'

(a) -g -

The tranofornation fros , to y io ade in order to obtain a rectangular do -
main (Fig. I). The tranoforr.e axial variable ~ is uood.ln tho cae of claoical ;
nozzles eith very small throat radius of curvature (0, 1 (0< .5). Xt allom to
stretch the throat region whero large gradiento occur (Fig. 2). hen , O.S, the
stretching in not used (X':). -) -' 

The coordinaten transformation being regular, it ia pooDible (ANDER.SON, LAPDUS)
.to write the time-dependenti equations of motion in conservative form in the noe ·
variables ' ' :' : ' -' .... . . : . ' 
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Tho componento of the vetor V ar ':

(4) , a E VCS4J. g. ."

where J(%) Vs)j9i), B is the angle of the velocity vector with the z -anlo,
e= /(,), 4 +eV Iso total energy for a perfect ga-. Tho parateIor ta oqual to 0 ;
for plane flow and to I for axisyEmatric glow. -

.The couponento of the vectors F , G and H are given in torna of ths compo-
nents of and of geaomtrical variablesn such.that asg 4C ), 44 

and

(5) - F=F(UB w -(jJr4,5s,- H (U- y -
11 - FINITE-DIFFERENCE SCHEIE M

A rectangular net of pointn is defined in the , y plane with tho coordinato
ln (i 0o9... nd yC ( e,>... ) Lst Ud be the value ofU at

the point sfi , ~o, ., and at time w&g r, with -va , *. .. , .

.e use the following explicit, second order achoem : 

:99a~ ~ ~ ~ ~ > L ) "", 

(6) g -

O U :U L t O(ie.oHffi 5,to HS~e"AtHe4) ...;Q.

a# (° IIJ28u ; &tBiYt&C t(" ,'", '-:t... · .- .~
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The vectorso , i adnd Q1 are det.r o ined through equations (5).' .

A pswedc-visooaity term is added to the right-hand aide of (7):. .: 

(8) Q-: XA (x:tp(¶gi)v(j;Uc9J~ - ;
which in of the type defined by BURSTEIN.

One knows (BURSTEIN, RICHTwYER) that it is neceosary to uoe pseudo-viocosity
tern in a second-order scheme in order to avoid non-linoar inotabilities. Tho eatrieo
qand 9r are given by the expressions (zAPID : S

where 1& and VW are the velocity components and X io the unit oatris.

The study of the stability waso ede for plane flois and the reaulto aro giten
in (P. LAVAL, 1970).

For clasoical nozzles, preliminary numerical calculations have load to define 
the paraneter a ahioh appears in (8) as a linear function of / :

(10) x y D ' .

Thero , the value of aX t the wall, is of order unity.

III - INITIAL AND BOUNDARY CONDITIONS

For a given noszzle, the value of @ io known on the upper -Ya.) and lower (Yx.)
boundaries (Fig. 3);

The initial values of f , @ and V are obtained from the ono-dicansional apprc
xination, the angle 1 being calculated by a linear interpolation : ~g~4 

For the floe values at the upper and lower boundaries, a parabolic extrapolation
is used, taking into account the relation UD U8 t0 ( .) When the loer boundary
is the noszzle axis, the flow symetry io taken care of by a parabolic tnterpolation.

A _Y=.,e_-e( x) B - B 

_r- :'t:L' _ _ A

- :-r#:;:3--00 ;-) -z - 5 ' _ ~I C , T _ _ _ .. T: 'a

_.._-...-.- : - .- ' 'DJ A B. 

C ,I6 I D

C -: ... .C",,.
PY O g = , at'

t ,1 .

FIGURE 3

C 0 ' - ; -I, , . '; !.

1 ,x_ o .:-,. ., . . ,, 
, ' '" ' FIGURE 4

.. . - . , . ..

: .

i
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Tico-dependent conditions are imposed at the entrance section AC by calculat2ng,,
the components of U by a parabolic extrapolation. The component Uia is then cor-
rected by writing that the aess flo rate D)o through the entrance osection at tine

lbot is equal to the mass flow rate through the throat Soction at tilo . (Fig. 4).,

At the exit section BD, values are extrapolated linearly (Fig.4).

IV - RESULTS

Calculations have been carried cut on a 360/50 IBM cocputor, for . t a 1.4.,

IV. - AxisXemetric nozzle with small throat radius of curvature ( Q/ = 0.625)

This nozzle which io nade of a 45 ° convor-:-
gent and a 15 ° divorgent (Fig.5) has been otu-
died by variouo authors (CUFFEL, ELIEGEL,
PROZAN, MIGDAL).

The resulto nave been obtained with a not
of 61 x 21 points (~,') and with ,,1.5. :
the stretching of the axial coordinate being
not used.

A I I. . I

I
I

x a,

I I '

I, {& I

-4 ·*.- - ,---. f .- -- Steady state in considered to be obtained
K------ s ---A at the throat when the sass flow rate change

at each iteration bacosa smaller thana .C.d,
FIGURE : Axisymmetric nozzle (:o,6fg) This occurs after 398 iterations (Table I). he ':

corresponding values of the Mach number aro.
1.3935 at the wall (Fig. 6) and 0.8 on the axis (Fig. 7). Theae values can be oospa,.
ed with CUFFEL' esxperimental values 1.4 and M_4 = 0.8. 

i,0,4$2JItTC " " - "| NOTI REPROD UCIBLE

l..- , -- I/S. iTRtc OZZL

sleady Si-'S
~qir J5t>~

{.l3

Al

voo Um zvo -*o

FIGURE 6 : Throat section Mach number
on wall va tias

TABLE I - Discharge coefficient

I N i C
.7 D

392 0.9849025
393 0;9850113
394 0.9850981
395 0.9851634
396 0.9852066
397 0.9852279
398 0.9852274

: ai 4 °"^ Ct¢4§.

,, , , , ~pmapce.., t-)'

: ' ' - ' J2 ISO AGW6O

C$@¢24eeB~~ 

gho~ier ^b

Ton , MS . d0o' I

FIGURE 7' Throat section lach nusbor
. on zaxio va tice. ,

CD

KLIEGEL &a LEVINE 0.91

CUFFEL, BACK & MASSIER 0.9f

PROZAN (SAUNDERS at.tlod) 0.9.

Present ethod 0. 9852:

Tho values of the dis- 
charge coefficient CD cal--
culated at the throaL Sac-.
tion for the last seven

_ iterations are given in
82 Table I, where N in thoe 
- iteration.number. The
85 asymptotic value is copp-
- ared with values obtained
90 by other methods.
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IV.2 - AxieSyGetrlc nozzlo with very salil throat radlua of curvature ( 1/8, D 0,) -

A

I Dz, B
Convergent and diversont angloe are bo- ..

equal to 20 0 (Fig. 8).

' , : es< . Strotching of tho axial coordlneto tot / . ~ t;~ ~ ~ , used with o0 3.4. A nt of 68 a 23 points

(A*y) 10 used, ith . .
1C · ' ' O Table II gives the discharge coefficient

.at the throat. One oeao that after 278 itelr
< X t=a P :iono CD changeo by lesa than g -aI ' .n 

one can conoider that the asynptotic vauo .,

FIGURE 8 : Axisymtric nozzle (R/1o,4) CD la 0.98988 -

;.'~'~ _ , . _'.' '::J<TABLE 11 - Discharge coefficient .

· · ' . \N ICD

275 0.9690063
.:-C , : 276 0.9689981

\ \ \'277 0.9689925
_ . \;.C 278 0.9689889

/ /::', \ - .,

· o, . , . ' ct. o, \ ;- \ / _ /- e- .350. 0o 69428 : .- .

-G. 0 0.,1 . 1o,. e.. 375 0. 969079 * .- .:

FIGURE 9 Axisymmztric nozzle with very
emall throat radius of curvature) '

Froa Figure 9 it can be soen that large varinltons of Mlach nuaber occur, parti-
cularly at the wall, on thG ractilinar part of ahich the conic point is located, ver
close to the circular part.,-wheroa. the Miach uabori a..al:.e: 1.821 at the t.hrat.
section.

·:~~~~~~~~~~~~~~~~~~~~~~~.'

IV.3 - Axisyometric nozzle with a 20' convergent and varyin . t ratios

To study the approach to the liiting case of a cOnQc1l converging noanlo, cal-
culations have been mado for three values of /I2 : 0.25 - 0. , besides the
value A/ = O0. 1 (IV.2). The results will ba compareod lth oupori3nnto carriod out at
O.N.E.R.A. (SOLIGNAC) for a a20 conical convorglng.no&loe.-', .'.

Excellent agreement is found between theory and exporiEant concerning the loca-
tion of the sonic line (Fig. 10). Entrapolating the nusarical results relative to th
4 values of i/8,, on obtains CD a 0. 968 for 6/,L 0 (Fig. l I1). The difforenco. bet nee
this value and the experimental result CD = 0.971 can be explained partly by the '
difficulty of the m3aoureaents in tho neigt.bourhood of tho angular point.

. #- -;; is s r * - , o.4 - - . . . ~~~~~~~~~~~~~~~~l. 
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CONCLUSIOe

The calculations which havo beeoon presented, and pargticularly the oxcollont rg+
aent which hao boon found between oxperianotal and numerical rooulto, oahv that the
proposed mothod ina all .uitod for calculating tranonio nonleo flog. This oothod
prosento the following particular foaturoe :

- conditions in tho entrance soction aro tima-depndent;.
- tho paraotor X which appearo In tho pooudo-vioeooity tom Ia dofinod ac a

function of the tranaformed coordinate Y (oqu. 10);
-o a strtching of tho axial ooordinate (equ. 2) nallo to troat the ca&e of vory

snall throat radiun o curvatur and to approach the coa of a coniol cosrg- 
ing noanlo; _

- tho tothod lo apicablo aleo to annular noaloa .(P. LAVAL, 1970).
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